
Technical Review of Meld Smart Contract

Smart Contract Verification Team

Contents

1 Executive SummaRy and Scope 2

2 Audit 3
2.1 Methodology . 3

2.1.1 Auditing process . 3
2.1.2 Technical aspects . 3

2.2 Findings and Deliverables . 4
2.2.1 Vesting Contract . 4
2.2.2 Locked Staking contract . 6
2.2.3 Variable Staking contract . 9

2.3 Conclusion . 10

1

Chapter 1

Executive Summary and Scope

This RepoRt is pResented without waRRanty oR guaRanty of any type. This report lists the most
salient concerns that have so far become apparent to Tweag after a partial inspection of the engineering
work. Corrections, such as the cancellation of incorrectly reported issues, may arise. Therefore Tweag
advises against making any business decision or other decision based on this report.

Tweag does not Recommend foR oR against the use of any woRK oR supplieR RefeRenced in
this RepoRt. This report focuses on the technical implementation provided by the project’s contractors
and subcontractors, based on their information, and is not meant to assess the concept, mathematical va-
lidity, or business validity of MELD’s product. This report does not assess the implementation regarding
financial viability nor suitability for any purpose.

Scope and Methodology
Tweag looks exclusively at the on-chain validation code provided by MELD. This excludes all the fron-
tend files and any problems contained therein. Tweag manually inspected the code contained in the
respective files and attempted to locate potential problems in one of these categories:

a) Unclear or wrong specifications that might allow for fringe behavior.

b) Implementation that does not abide by its specification.

c) Vulnerabilities an attacker could exploit if the code were deployed as-is, including:

• race conditions or denial-of-service attacks blocking other users from using the contract,
• incorrect dust collection and arithmetic calculations (including due to overflow or under-
flow),

• incorrect minting, burning, locking, and allocation of tokens,
• authorization issues,

d) General code quality comments and minor issues that are not exploitable.

Where applicable, Tweag will provide a recommendation for addressing the relevant issue.

2

Chapter 2

Audit

2.1 Methodology
MELD, referred in the following as the client, submitted three Plutus smart contracts to Tweag for
auditing: namely the Vesting contract, the Locked Staking contract, and the Variable Staking contract.
The client could not provide the Variable Staking contract in time for Tweag to work on it within the
time allocated to the audit.

Tweag analyzed the Vesting and the Locked variant Staking on-chain validator scripts as of commit
539df59 of the client’s repository at https://github.com/MELD-labs/smart-contracts. The relevant
filenames, including documentation, and their sha256sum are listed in table 2.1.

Section 2.2.3 of the audit goes beyond the stated scope and provide some comments on the Variable
variant of the Staking contract. Due to time constraints, this contract is considered as out of the scope
of the audit, and the remarks on it are provided out of courtesy to the client.

2.1.1 Auditing process
For each contract, Tweag carried out the following process:

a) Analysis of the official specifications as stated in the documentation provided in vesting/README.md
and staking/README.md and the associated on-chain code in .../OnChain.hs, .../Types.hs, and
.../Common.hs files.

b) Informal discussion with the client about general features of the contracts, specific points of con-
text, and technical aspects Tweag wanted to clarify.

c) Simulation of traces in the context of a regular usage of the contracts in order to assert the con-
formance to the specifications. Unit tests and property-based checking have been carried out and
are reported in Section 2.2.1 and Section 2.2.2.1.

d) Identification, from specifications and code inspection, of possible vectors of attack Tweag deemed
relevant to explore and experiment on.

e) Attempts to exploit these hypothetical weak points using custommade traces. These attempts are
listed as unit tests reported in Section 2.2.2.2 and Section 2.2.2.3.

Throughout this process, Tweag identified side remarks that may also be of interest to the client.
They are reported in section 2.2.2.4.

2.1.2 Technical aspects
On the technical level, Tweag carried out its experiments using Tweag’s Cooked Validators library. It
provides tooling for building and manipulating transaction traces. It also interfaces with the Plutus
library to validate them.

3

https://github.com/MELD-labs/smart-contracts

sha256sum File Name

c709108...f496b78 vesting/README.md

9af12f7...670baef vesting/src/MELD/Contracts/Vesting/Common.hs

b46745c...f1abcd1 vesting/src/MELD/Contracts/Vesting/Types.hs

4135a9c...c8a2438 vesting/src/MELD/Contracts/Vesting/OnChain.hs

5b5c5ac...90734a7 staking/README.md

ef4758e...d445e60 staking/src/MELD/Contracts/Staking/Locked/Common.hs

c29825e...bf9855d staking/src/MELD/Contracts/Staking/Locked/Types.hs

80ac560...dd9c3e2 staking/src/MELD/Contracts/Staking/Locked/OnChain.hs

2cf6d62...e288bdd staking/src/MELD/Contracts/Staking/Locked/Treasury/Types.hs

ebc0347...cd3ca56 staking/src/MELD/Contracts/Staking/Locked/Treasury/OnChain.hs

Table 2.1: Files containing on-chain code (or documentation) and their sha256sum

Both the Vesting and Staking contracts mainly deal with a class of assets called MELD tokens whose
life cycle is outside the scope of the audited smart contracts. Tweag modeled the minting policy of
these tokens with a one shot currency: a fixed amount of MELD tokens are minted once and for all at
the beginning of the test traces and shared among addresses to fit the scenario of each test case.

The Locked Staking contract deals with a concept of upgradable non fungible tokens. A token evolves
when its level (information carried by the token name) increases, which means in practice replacing an
NFT by another with the same token name apart from the level. The minting policy for these tokens
is not provided by the client alongside the contract. During the audit, Tweag assumed the existence of
a minting policy that makes sure minting a higher level NFT requires to burn the associated previous
level NFT. Such a policy is paramount to the security of the contract. Section 2.2.2.3 details experiments
carried out regarding NFT evolution in the context of a “Locked Staking” position.

2.2 Findings and Deliverables
This section details the performed tests and experiments along with the observations gathered through-
out the audit of the client’s on-chain validators.

With respect to the functional correctness of the three contracts, we have not found anything out
of the ordinary. The validators behave as expected and we did not detect any vulnerability. Our main
findings of interest are summed up in table 2.2. They cover a few unexpected behaviours on fringe cases
that pose no threat, and some comments on the validators. Testing for the regular usage and failed
attempts to violate the specifications are reported in this section but not in the table of findings.

The audit has been carried out using Tweag’s Cooked Validators library. We provide the client with
the audit project alongside this report. We refer to modules of the audit project (Audit.*) in the remain-
der of this report.

2.2.1 Vesting Contract

4

Severity Section Summary

■ Medium 2.2.1.2 The whole contract relies on one private key
■ Medium 2.2.2.4 Conditions on the validator check more than what is declared
■ Low 2.2.2.3 Undeclared NFT in staking position
■ Low 2.2.2.3 Out of bounds levels
■ Low 2.2.2.4 Possibility to unstake two positions associated to different authentication

asset classes in the same transaction
■ Low 2.2.2.4 The requirement on the useless treasury inputs makes it harder to collect

remainders
■ Low 2.2.3.2 The Computation of the interest amount is complex and undocumented
■ Lowest 2.2.2.4 Nested conditions in the validator scripts would benefit from more tracing

Table 2.2: Table of findings

2.2.1.1 Basic Usage

This contract is very simple, hence allowing almost no attack strategies. We ran some simple traces, all
defined in module Audit.Vesting. Those traces are really close to the expected usage of the contract.

Possibility to withdraw
Themain purpose of the vesting contract is to allow users towithdraw themoney stored in their position,
with some time constraints.

Hence, the function withdrawProp checks that the amount a user can withdraw at each point in time
conforms to the specifications of the contract.

Identity of the withdrawer
There are two notions of “withdrawer”: it either refers to the person who signs the transaction to with-
draw money from a vesting position, or the person who receives the money originating from such a
transaction.

Since the specification does not lift the ambiguity, we assumed that signing the transaction was the
determining element. Hence, vesting offers the possibility to vest and transfer the money to someone
else in the same transaction.

Function differentSignerReveiverProp tests this assumption. It turns out our assumption was
correct: it is possible to give the money to anyone provided that the signer is the one specified in the
datum. Conversely, it is impossible to vest without the signature, even if the money is transferred to its
legitimate owner.

Possibility to alter a position
Partial vesting should not make it possible to modify the datum of the vesting position. Especially, it
should not make it possible to modify the public key of the expected receiver. Neither should it make it
possible to modify the creation date, since it would be a mean to vest without waiting for the contractual
epoch. Function datumVestModifProp checks that these fields in the datum cannot be changed.

5

2.2.1.2 On the Administrator

The contract features the Update redeemer which allows altering any vesting position on the sole condi-
tion that the transaction containing the alteration is signed by the administrator of the contract. Given
the freedom this administrator has, it is obvious that if we do not assume any properties on their be-
haviour, undesired situations may arise. Therefore, we decided not to illustrate those situations. How-
ever, this raises a strong concern regarding the administrator position.

■ The whole contract relies on one private key Severity: Medium
The creation and modification of all the vesting positions rely on one single private key. The manage-
ment of such a key is a major concern for the viability of the contract.

Indeed, if there exists only one copy of the administration key, then the risk of loss is non-negligible.
And the loss of this key makes the contract impossible to manage further. On the other hand, having
multiple copies of this administration key raises the risk of a malicious use of it, allowing the robber of
the key to steal all the meld tokens in every vesting position.

2.2.2 Locked Staking contract
Even if this contract remains quite simple, it is more advanced than vesting. Its main purpose is to allow
users to stake some Meld tokens for a predefined duration, and to get interest on it at the end of the
staking time.

2.2.2.1 Basic usage

The most basic usage of the contract is to simply stake some Melds and wait for when the deadline
is reached to unstake them and get the interests. Those basic use cases are explored by functions
traceStake and (traceUnstake 1) of module Audit.Staking.Locked.Regular.

2.2.2.2 Authentic token hijacking

The following attacks aim at extracting value from treasury pools using authentication tokens. Spending
treasury pools require that a transaction input carries an authentication token (of the right asset class).
In practice this means that unstaking a position is the only way to get value from the pools (in order to
pay for the staking rewards). To avoid possibly exceeding the size limit on validator scripts, the asset
class in question is not a script parameter but part of the datum in treasury pools.

We considered hijacking authentic tokens an interesting vector of attack to explore for the following
reasons:

• The treasury pool validator only checks for an authentic token. Hence the possibility to empty
pools if we manage to steal or duplicate a genuine token.

• The asset class of authentic token is part of the datum, not a script parameter, so it might be
possible to modify it.

• The life cycle of authentic tokens from minting to abandonment in the treasury pools themselves
is complex and uncommon enough to deserve closer inspection.

The contract is robust against the following attempted attacks, which are presented in module
Audit.Staking.Locked.AuthTokenHijacking:

6

Rob a treasury pool with an authentic token from another
In trace traceHijacking, a staker creates their own treasury pool in order to host the authentic token
of a staking position after unstake. Then, they try to use that additional treasury pool (which holds an
authentic token) to rob the MELD tokens from an official MELD treasury. This fails because the treasury
pool validators prevents this by checking whether the authentic token comes from a UTxO with same
datum (the datum is the same among all treasury pools associated to a given authentic token asset class).

Swap authentic tokens of different classes during double unstake
In trace (traceTwoDifferentAuthTokens True), there are two kinds of treasury pools associated to two
different authentication tokens. Two staking positions are opened, each associated to one of the asset
classes. This attack consists in unstaking both position in the same transaction and swap the authentic
tokens in the meantime. After this, the tokens in the treasury pools would match the datum of the other
pool and the check that made the previous attack fail would pass because the pools have different datum
(two different asset classes).

Fortunately, such a double unstaking fails when one tries to swap authentic tokens. Indeed, function
validateLockedStaking checks that the authentication tokens are all in treasury pool with the expected
datum after unstaking.

Change the asset class of the treasury script when unstaking
In trace traceAttemptChangeTreasuryAssetClass, a staker unstakes after the unlock time. They transfer
the authentic token of the staking position to a treasury pool and, in the same transaction, try to change
the asset class in the datum of the treasury pool to an adversary asset class in order to retrieve value
from the treasury pool later.

Function validateLockedStaking prevents the modification of the datum. Indeed, the test called
“Must withdraw the correct interest” checks that the meld tokens that were in the treasury pool remain
in a treasury pool with the same datum (apart from the interest which are withdrawn).

Steal an authentic token during a double unstake
In trace traceAttemptAuthTokenTheftInDoubleUnstake, a staker opens two identical staking positions.
Two authentic tokens are minted and locked in each of the positions. After the unlock time, the staker
unstakes both positions in the same transaction but only sends one of the authentic tokens to a treasury
pool and tries to steal the other.

Condition “Auth tokens must be at the correct locations” of the validator script fulfills its role and
prevents such a grabbing of authentication token.

Unstake two positions with only one authentic token
In trace traceAttemptDoubleUnstakeWithOneAuthToken, a staker opens a legit position that mints an
authentic token and also an illegitimate one manually. They then try to unstake both in the same
transaction and obtain reward for both the legitimate and illegitimate positions.

Here condition “Must withdraw the correct amount” checks that the amount which went out of the
treasury pools is exactly the interest expected by one of the position, meaning that it is impossible to
unstake two positions simultaneously, no matter the presence of authentication tokens.

7

2.2.2.3 Experiments with NFT evolution

As stated in section 2.1, Tweag assumed the existence of a minting policy that takes care of burning a
lower level NFT tomint higher level one. This section details experiments onNFT evolution disregarding
the possible attacks involved by having more than one level of an NFT on the chain.

■ Undeclared NFT in staking position Severity: Low
It is possible to open a staking position whose value contains an NFT that is not officially declared in the
datum dNFTTokenName = Nothing. See traceUndeclaredNFT inmodule Audit.Staking.Locked.Evolution.

The example traces in the module show that:

• it is impossible to upgrade the NFT to a higher level

• it is impossible to obtain the NFT bonus when unstaking

• it is possible to unstake (without the NFT bonus)

■ Out of bounds levels Severity: Low
Official levels for the NFT are 1, 2, 3, 4, and 5. It is assumed that the existing minting policy forbids
mintng other levels. Note that validator validateLockedStakingEvolveNFT double checks that the level
of the NFT is within the bounds. On the contrary, no such check is performed at the creation of the
staking position, since validateLockedStakingAuthToken accepts any token name. Especially, it is pos-
sible to give an NFT of level 0 to a newly created staking position. This NFT is functional, in the sense
that it is possible to evolve it later from the illegal level 0 to the legitimate level 1.

2.2.2.4 Additional remarks

■ Possibility to unstake two positions associated to different authentication asset classes in
the same transaction Severity: Low
In module Audit.Staking.Locked.AuthTokenHijacking (see (traceTwoDifferentAuthTokens False)),
two staking positions using authentication tokens belonging to different asset classes are closed (un-
stake) simultaneously. It is noticeable that this situation makes it possible to unstake two valid positions
in the same transaction. This is probably an unintended behaviour since several tests in the validator
script actively check against multiple unstaking.

■ Conditions on the validator check more than what is declared Severity: Medium
Validator validateLockedStaking for Unstake case contain 5 conditions. Three of them check what
their name suggest: signature (“Must be signed by owner”), time and quality of the inputs (“Position
still locked” and “Cannot consume more than required treasury”).

The last two checkmore than suggested by their names. “Must withdraw the correct amount” checks
not only the amount withdrawn, but also:

• checks that the datum of the treasury pool is not modified,

• guarantees than only one withdrawal is performed by the transaction, since the amount of Meld
tokens leaving the treasury pools must correspond exactly to the interest amount of one staking
position. (With the irrelevant exception that it is possible to unstake simultaneously two positions
which both stake 0 melds.)

8

Similarly “Auth tokens must be at the correct locations” also checks that there is only one input
which is not a treasury pool and contains an authentication token. Thus, it prevents multiple with-
drawals in the same transaction.

The impossibility to unstake several positions in one transaction is crucial to prevent some of the
attacks we tried. Yet, it is undocumented and not clearly listed as an item checked by the validator.
There is a non-negligible risk of accidentally removing that property in future updates of the validator.

■ Nested conditions in the validator scripts would benefit from more tracing Severity:
Lowest
In function validateLockedStakingAuthToken, the verification of the validity of the output is performed
via a function checkOutput which performs 3 different checks. Providing information about the failing
one would be helpful, when a transaction fails.

It can be noted that this issue is also present in the validator validateVariableStakingAuthToken,
where the sub-function checkOutput does 5 distinct checks.

■ The requirement on the useless treasury inputs makes it harder to collect remainders
Severity: Low
The validator validateLockedStakingAuthToken performs the “Cannot consume more than required
treasury” check. This check ensures that it is impossible to use only a strict subset of the treasury
pools given as input to the transaction. This means that whenever a treasury pool contains a very small
amount of meld, it is not easy to simply empty it and use a treasury pool with a large amount to complete
the transaction. One has to wait for the existence of sufficiently many almost empty treasury pools to
consume and merge all of them in the same transaction. This impossibility to do some cleaning on the
fly might become annoying.

Furthermore, we did not identify any issue related to the fact of allowing transactions consuming
more treasury pools than required.

2.2.3 Variable Staking contract
This contract is the most advanced of the three. Since the client only provided it two days before the
end of the audit, we did not have enough auditing time to draw conclusions about the correctness of
the design and the implementation.1

2.2.3.1 Basic Usage

The most basic use of the contract consists in staking some Melds and withdrawing it (all or part of) at
some point in the future along with the interest amount.

The traces of module Audit.Staking.Variable.Regular test those basic uses of the contract. So, in
all those traces, a staking position is opened, later a withdrawal request is sent, and finally this request
is either fulfilled or canceled. In each of the cases presented, we verified that an evolution of the interest
rate of the treasury pool can happen at any point of the trace without causing issues. All those basic
traces validate without trouble.

1Hence, this section only presents basic traces and one issue about documentation. This small amount of issue is purely a
consequence of the small amount of time spent to explore the contract.

9

2.2.3.2 Remarks on Documention

■ The Computation of the interest amount is complex and undocumented Severity: Low

When a financial position has an interest rate, one often expects the total interest amount to be the
principal multiplied by the rate and the time the position has remained opened.

The client has made a completely different choice which does not involve any computation with
time. This strategy to compute the interest is not properly documented and was only understood after
an exchange of messages between the auditing team and the client.

The treasury pools comewith an interest rate, which is copied within the field dMarketInterestRate
of the staking position. On a regular basis, the interest rate stored within the treasury pools is raised by
the administrators, and the interest a user benefits from when they unstake a position, is the difference
between the interest at the time they opened the position (the dMarketInterestRate) and the one stored
in treasury pools.

So, the field dInterestRate of the treasury pools contains the interest someone would get if they
opened their position the first day. And the field dMarkedInterestRate of the datum of the staking
position store how much of those interest rate were already consumed (i.e. either missed because the
position is not opened since the very beginning, or already considered in the dInterestAmount field of
the staking position).

2.3 Conclusion
We focused the audit on theVesting contract and the Locked Staking contract. We have not found any vul-
nerability or important (apart from irrelevant edge cases) violations of the specifications. We attempted
a family of attacks against Locked Staking to steal assets from treasury pools. They involve closing sev-
eral locked staking positions in the same transactions. Multiple unstaking in the same transaction is not
allowed by the validators but there is no clear dedicated guard in the source code. We suggest that the
guard be made explicit in order to avoid weakening it accidentally in future update. The source code is
very clear and well-commented. So is the official documentation. Finally, we note that many security
aspects of the contracts, in particular Vesting and the NFT management for Locked Staking, heavily rely
on off-chain procedure carried out by trusted administrators. These procedures and administrators are
probably, to our knowledge, the weakest links in the security of the audited smart contracts.

10

	Executive Summary and Scope
	Audit
	Methodology
	Auditing process
	Technical aspects

	Findings and Deliverables
	Vesting Contract
	Locked Staking contract
	Variable Staking contract

	Conclusion

