
Akamon α: An Interoperability Solution for

Cardano and Polygon

MELD Labs

May 2022

Abstract

This paper presents Akamon α, a native bridge between Cardano and
Polygon. The objective is to leverage both chains’ efficient infrastructure
to bridge native assets between them. Akamon aims to be a community-
driven bridge open for everyone, emphasizing decentralization and trust-
less custody. Nevertheless, we have to stay centralized in the first testnet
launch and semi-decentralized in the upcoming launches towards the end
of 2022. The goal is to make iterative improvements to collect experi-
ences along the way. For instance, an early centralized testnet brings us
practical UX, infrastructure, and operations foundations for us to focus
on decentralization later on. We will propose our road to decentralization
in an Akamon β paper to be released end of May. A β testnet launch will
follow suit on June 5th 2022.

1 Introduction

Blockchain interoperability[7][8][1][4] is a relatively new field that is constantly
evolving. People build Blockchain bridges to enable communication between dif-
ferent networks. Although most solutions share the core functionality of wrap-
ping assets from one end to another, their architecture may vary significantly.
With WBTC, we have a multi-institutional design with trustful custody, KYC,
and AML. Projects like RenVM, on the other hand, aim for permissionless and
trustless custody.

Akamon explores different architectures and techniques by starting with a
bridge between an eUTXO[2] ledger in Cardano and an account-based one in
Polygon[3]. We start from a fully centralized design and then decentralize it
with each new design iteration. We further explore optimizations to prevent
network congestion, improve decentralization, governance structure, settlement
time, capital efficiency, dApp integration, and more.

This α white paper does not focus on technical depths as more key com-
ponents will be introduced in β. Instead, it is planned to be a comprehensive
introduction that provides insights to the users and all the moving pieces to the
development team.

1



2 Akamon α

Akamon α is the first design iteration among the many we develop. We design
the bridge iteratively to focus on a new fundamental concept with each iteration.
α focuses on setting up the foundation for the later versions. We also aim to
collect UX, infrastructure, and operations experience through it to have more
space for decentralization designs in the later iterations. β expects to semi-
decentralize the bridge, γ promises to bring more networks to the table, with δ
seeking a fuller decentralization design.

The foundation for all iterations is to wrap assets between the chains. For
example, an ADA round trip can be seen below.

Users first send ADA or mMATIC to an on-chain script to initiate a request.
Sending ADA is to mint mADA on Polygon. Sending mMATIC is to burn them
on Cardano to get back MATIC on Polygon. Confirmation then happens when
validators sign to confirm the request. Once enough signatures are gathered,
the users receive tokens on the other end of the bridge. The confirmation pro-
cess should evolve with each iteration, from centralized (one signature) to fully
decentralized. (community nodes).

Another foundation is that the bridge nodes should stake locked tokens to
generate additional revenues. This incentivization is key to node operators and
users, implying that the more traffic there is, the lower transaction fees.

Due to the iterative nature of the process, it is also essential to build mi-
gration frameworks to transition from one iteration to another seamlessly. This
process includes both data and assets migration, which is not trivial to do right.

2



2.1 Wrapped Tokens

In α, we deploy centralized contracts for the wrapped tokens. We start with
mADA and mMATIC and will soon extend to mMELD and more native tokens
from both ecosystems.

On Cardano, the minting policy verifies that the minting transaction is
signed by the bridge key with a simple txSignedBy. The on-chain script is
defined in Akamon.Cardano.Mint.Policy. We then expose a mintingPolicy

:: PubKeyHash -> MintingPolicy function to constructs the minting policy
from a bridge key read from the environment variable CARDANO SIGNING KEY.
This is better than reading both values from the bridge configuration, as a mis-
match would lead to invalid minting transactions. A sloppy Cardano node setup
would further risk the collateral of the minting transaction.

The policy id of the α mMATIC on the Cardano testnet (1097911063) is
f6f965943c738b48513277c1baf4770aa3873f2f624bfd2567322d4b.

On Polygon, the token contract defined in mADAToken.sol verifies that the
minting transaction is signed by the MINTER ROLE and the burning transaction
is signed by the BURNER ROLE. Our deployment script in 3 deploy v0.js grants
the bridge contract (defined in AkamonBridge.sol) these roles after its deploy-
ment. The Akamon node reads this bridge key from the POLYGON PRIVATE KEY

environment variable.
The token contract of the α mADA on Mumbai is

0x222D66A3878772F1A3597cd8265dea569B4410A5.

These α wrapped tokens will be abandoned from β, where the minting of
the wrapped tokens is verified by a group of many more agents.

2.2 Akamon Core

Akamon Core is a Haskell library that defines the bridge’s core types and utility
functions. While we utilize standard tooling for on-chain code (Haskell and Plu-
tus for Cardano, Solidity for Polygon), we use Haskell as the main programming
language for the off-chain components.

For the time being, akamon-core includes token, address, transaction repre-
sentations on both chains, time and status data types, testing utlity, and more.
The key dependencies on Cardano are cardano-api, cardano-ledger-core,
and cardano-wallet-core. The key one on Polygon is web3-solidity.

As we support more chains, we intend to port the actual representations to
their packages like akamon-cardano and akamon-polygon. akamon-core then
focuses on defining the generalized typeclasses for all the representations and
utility.

3



2.3 Akamon DB

Akamon DB defines the database schema for a bridge node. We currently have
an Akamon.DB.Schema.Event relation tracking users’ minting and redeeming re-
quests on both chains, and a Akamon.DB.Schema.Fulfillment relation tracking
the bridge’s fulfilment of those requests. Through these two, the bridge node
listens to new transactions on both chains to insert new Akamon events and
spins dedicated worker threads to fulfil them.

While the database schema can be SQL-generic, we currently use Post-
greSQL as a strong standard choice. We spin a local instance through Docker
for local development and testing and run an AWS RDS one in production. The
sample Docker setup can be found in docker-compose.yml. An initialization
script can be found at init.pgsql.

Note that this database setup only works for the centralized α as certain
states are not recorded or quickly recovered from on-chain data. From β, we have
a dedicated indexer that only syncs on-chain data without updating anything
like in α. An Akamon database should then be a local cache for fast queries
that can be re-synced from scratch any time.

2.4 Akamon Cardano

Akamon Cardano implements the specific Plutus minting policy, events, actions,
errors, and testing utility on the Cardano side of the bridge. For α, a wrap
ADA or redeem mMATIC transaction on Cardano sends ADA or mMATIC to
the bridge with the Polygon recipient address in the transaction metadata. The
bridge then sends mADA or MATIC on Polygon accordingly. On the other end,
the bridge builds, signs with CARDANO SIGNING KEY, and submits a transaction
to the recipient when receiving wrap MATIC or redeem mADA events on the
Polygon end.

Currently, α heavily depends on Cardano Wallet for most interactions, in-
cluding bridge wallet management, querying incoming transactions, building
and sending transactions, and more. A Cardano Node socket is only required
to fetch protocol parameters for building the minting transactions. However,
Cardano Wallet’s role will reduce with each iteration – to be replaced by PAB
and other off-chain toolings that MELD has been building.

For integration testing, we have a Dockerized Cardano private testnet in
docker/cardano-private-testnset and a local setup in docker-compose.yml

to test against. A production setup replaces this private testnet with a Car-
dano Node connected to a public testnet. We always need a Cardano Wal-
let connected to one of the Cardano nodes’ socket. The bridge node then
connects everything through the CARDANO WALLET HOST, CARDANO WALLET PORT,
CARDANO WALLET ID, CARDANO WALLET PASSPHRASE, and CARDANO SIGNING KEY

environment variables.

4



2.5 Akamon Polygon

Akamon Polygon implements the Polygon side of the bridge. Both the mADA
token and the bridge contracts are written with OpenZeppelin’s Upgradeable
Contracts. We then build the ABI with Nix for MELDapp integration. We
utilize Truffle for development, compiling the contracts, writing tests, and de-
ployment.

For the off-chain components, akamon-polygon implements the Polygon
events, actions, errors, and testing utility that the bridge node needs. For α, a
wrap MATIC or redeem mADA transaction on Polygon sends ADA or mMATIC
to the bridge contract with the Cardano recipient address. The bridge contract
then emits an event for the node to catch before initiating the Cardano trans-
actions accordingly. For Polygon contract interaction, the node signs with the
key read from the POLYGON PRIVATE KEY environment variable. The contracts
must have been deployed with the same key.

Akamon Polygon heavily depends on the hs-web3 Haskell library. At the
infrastructure level, it depends on a Polygon RPC to interact with the Polygon
network. For development and integration testing, we have a Dockerized private
testnet in docker/hardhat and a local setup in docker-compose.yml to test
against. A production setup replaces the private testnet with a Polygon Node
(Heimdall plus Bor).

2.6 Akamon Node

The Akamon Node ties all core components together into a single executable
service, including database, Cardano, and Polygon configurations and inter-
actions with their respective runtime services. The node also contains other
configurations and utilities for re-trying policy and stress testing. If we design
the akamon-core abstractions right, the node modules should stay tightly small
even when we support more chains going forward. Two current potentials are
Avalanche and Nervos.

docker-compose.yml lists all the services we need for a local development
setup and a full integration test suit with simulated concurrent users. Apart
from the PostgreSQL database, Cardano and Polygon private testnets, and
Cardano Wallet, we also have a cardano-submit-api server to connect Nami
with the Cardano private testnet.

For production, we use Nix to build a Docker image for the node, which works
well with the haskell.nix setup we already use for development. A sample
production setup with the Dockerized node is in docker-compose.alpha.yml.
For deployment, we mainly utilize Terraform and AWS (RDS, EC2, Fargate, S3,
Cloudfront, and more). A good to have is sharing production resources with
other MELD services.

5



2.7 Akamon API

The Akamon API server is the only other executable that the bridge builds.
It serves data from the Akamon DB for UI rendering, with other endpoints to
improve UX and MELDapp integration, including bridge addresses, fees, wrap
ETA, transaction submit, status, and listing.

As we decentralize the bridge with time, community members should be able
to build and operate their own Akamon frontend on top of its node and API
server. For now, MELDapp will be the first and only interface to Akamon.

3 Akamon β

We do not intend to release the centralized α to mainnet. We have been de-
signing a more distributed and decentralized β in parallel. The main goal of
an α testnet launch is to collect UX, infrastructure, operations, and community
management experiences to have more space to focus on decentralization later
on.

User needs and how they interact with the bridge should stay the same
regardless of its underlying architecture. One should not sacrifice UX to be a
little bit more decentralized if that is quantifiable in the first place.

We have already been writing the β paper with actual technical discussions
on the economics model, governance model, and contract designs leading to-
wards decentralization. The paper will be released at the end of May. A β
testnet launch will follow suit on June 5th 2022.

4 Related Work

4.1 WBTC

WBTC[5] is one of the first widely used interoperability solutions in the history
of blockchain. It wraps Bitcoin to Ethereum trustfully but utilizes a multi-
institutional design to distribute trust and power. WBTC’s design has become
outdated nowadays, with certain drawbacks like KYC and AML. That said, it
has brought many right ideas to the interoperability space, including but not
limited to the emphasis on security, trust model design, DAO-driven governance,
sidechain for scalability, atomic swaps for wrapped tokens, and regulation.

6



4.2 RenVM

RenVM is a Byzantine fault-tolerant network that enables universal interoper-
ability between blockchains. By combining consensus with their secure multi-
party computation (MPC[6]) algorithms, RenVM can instantiate a decentral-
ized, permissionless, and trustless custodian capable of locking assets on one
chain and minting one-to-one pegged representations of them on other chains.
In this way, users can interact with multiple applications, assets, and chains
with only one transaction.

At a glance, RenVM does everything right and should be a role model for
trustless bridges in general. The only disadvantages are a complex design com-
pared to trustful solutions, a non-trivial requirement on the number of validators
and their collateral, and a closed-source node at writing.

Building native Cardano support on RenVM is also something we are plan-
ning to explore.

4.3 Force Bridge

Force is a bridge that connects Nervos with other blockchain systems. Ner-
vos has recently launched the first mainnet version that supports Ethereum.
Cardano, Bitcoin, and other networks should follow eventually.

The bridge will maintain the light client in a multi-signature notary scheme
at the first stage. A committee consisting of the Nervos Foundation and the
community members will submit headers to the light client and their signature.

The bridge will replace the multi-sig-light-client in the second stage with
a consensus-based-light-client. It will be fully decentralized, where everyone
can submit headers. The contract will verify the header with the consensus
algorithm of the chain.

We are studying their solutions for potential inspiration and collaboration.

5 Conclusions

This α paper introduces all the components one may need to build a bridge
between Cardano and Polygon. The design is intentionally centralized first to
build a foundation for UX, infrastructure, and operations. Decentralization
works have been done in parallel and will be introduced in a β paper at the end
of May 2022. Blockchain interoperability is a relatively new field so much more
innovation is still awaiting. We expect to improve many contract designs with
the upcoming Cardano hard fork. Off-chain infrastructure and tooling on all
ecosystems can only get better with time as well.

7



References

[1] Rafael Belchior, André Vasconcelos, Sérgio Guerreiro, and Miguel Correia.
A survey on blockchain interoperability: Past, present, and future trends,
05 2020.

[2] M. Chakravarty, James Chapman, K. Mackenzie, Orestis Melkonian, M. P.
Jones, and P. Wadler. The extended utxo model. In Financial Cryptography
Workshops, 2020.

[3] Jaynti Kanani, Sandeep Nailwal, and Anurag Arjun. Matic white paper,
2020.

[4] Pascal Lafourcade and Marius Lombard-Platet. About blockchain interop-
erability, 05 2020.

[5] Kyber Network, BitGo Inc, and Repulic Protocol. Wrapped tokens, 2019.

[6] Ross Pure and Zian-Loong Wang. Renvm secure multiparty computation,
2020.

[7] Alexei Zamyatin, Mustafa Al-Bassam, Dionysis Zindros, Eleftherios Kokoris-
Kogias, Pedro Moreno-Sanchez, Aggelos Kiayias, and William J. Knotten-
belt. Sok: Communication across distributed ledgers. In Nikita Borisov
and Claudia Diaz, editors, Financial Cryptography and Data Security, pages
3–36, Berlin, Heidelberg, 2021. Springer Berlin Heidelberg.

[8] Alexei Zamyatin, Dominik Harz, Joshua Lind, Panayiotis Panayiotou,
Arthur Gervais, and William Knottenbelt. Xclaim: Trustless, interopera-
ble, cryptocurrency-backed assets. In 2019 IEEE Symposium on Security
and Privacy (SP), pages 193–210, 2019.

8


	Introduction
	Akamon 
	Wrapped Tokens
	Akamon Core
	Akamon DB
	Akamon Cardano
	Akamon Polygon
	Akamon Node
	Akamon API

	Akamon 
	Related Work
	WBTC
	RenVM
	Force Bridge

	Conclusions

