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Abstract

This paper presents an eUTXO[1] smart contract architecture that al-
lows auto-scaling concurrent and deterministic batching into a single state.
Our solution is entirely decentralized and does not depend on honest or
incentivized off-chain agents. We also cover more advanced topics like
DoS prevention, front-running, and MEV. While this paper uses batching
swap orders into a liquidity pool on Cardano as the case study, the ar-
chitecture should adapt to any frequently updated on-chain state on any
UTXO blockchain that supports scripting. We hope this work will lead to
a successful Cardano implementation and new smart contract architecture
research in the future.

1 Introduction

Most smart contract designs so far have been done on an account-based ledger
model like on Ethereum. Due to fundamental differences on the ledger level,
many of these approaches cannot be ported to the UTXO world. With the rise
of UTXO smart contracts on chains like Cardano, Ergo, and Nervos, there is
fertile ground for innovative new smart contract architecture research waves.

This paper presents a smart contract architecture that allows auto-scaling
concurrent and deterministic batching into a single state. This work is essential
in the UTXO world, where states are maintained in UTXOs that can only be
spent once. Without a well-thought concurrent framework, there will be a race
condition where different dApp users compete to consume the same UTXO. For
example, multiple swap transactions consume the same liquidity pool UTXO,
but only one succeeds per block. Our architecture allows dApp users to create
multiple batch step UTXOs that are applied to the state UTXO in one single
transaction. The key is to have a deterministic validation rule on-chain that
enforces deterministic inputs and outputs. With that, the agent submitting this
transaction cannot omit any input, rearrange the order, or change the output.
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2 The Architecture

2.1 Overview

We start with a state UTXO that we want to apply batch steps to. We then
attach a concurrency number c to its datum to determine the maximum number
of batch steps it can apply in a single transaction. Every time a state UTXO is
created, c reserve UTXOs must be created along with it.

A user can Reserve a step UTXO by consuming a reserve UTXO. A step
UTXO must contain all data and values required to apply the step to the state.
For a simplified liquidity pool interface, a step holds the public key of the trader
and the tokens of one pair to be swapped for the counterpart in that pair.

After the Reserve phase, anyone can Apply the steps into the state. The
validation rule of Apply requires c corresponding reserve and step UTXOs as
inputs. This disallows the transaction from omitting any reserved steps from
any user. The validation rule must be deterministic to guarantee a single set
of outputs for a given set of inputs. For instance, this would disallow the
transaction from choosing a preferred end-state by flagging a reasonable step as
invalid or mixing up the ordering to front-run on a liquidity pool.

The outputs contain the new state and c new reserve UTXOs. Depending
on the application, there may be user outputs such as a successful swap with
the desired tokens or a failed swap with the original tokens. Alternatively, a
failed step can be configured to remain for the next Apply transaction. After a
certain amount of time, a step can be rejected back to a reserve.

Reserve 1

Reserve 2

Reserve 3

...

Reserve

Reserve

Step 1

Step 3

...

State

Apply New Reserve 2

New Reserve 1

New Reserve 3

...

New State

We continue to explore key requirements and details of the architecture in
the following subsections.

2.2 Core UTXOs

2.2.1 State

The core component in the architecture is the state that we need to consume
UTXOs against concurrently. An example of this is a liquidity pool that tran-
sitions per swap order.
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While the content of the state is application-dependent, there are a few key
pieces of information to have:

• A concurrency level c: This is the total number of reserves and steps that
exist at any given time, hence the maximum number of batch steps that
can be applied in a transaction. This should be set to a number that meets
the current transaction size limit.

• A queue of past steps per block q: This queue can be used to auto-scale
the concurrency level c for the next block. For every Apply transaction,
we can use the current number of steps s with all the past number of
steps from q to set c for the next block, dequeue the front item of q, then
enqueue s to q. The scaling function is application-dependent, and it is
usually better to scale down slower than it is to scale up. For example,
when q is [10, 9, 8, 7] and the current s is 6, we can create 9 or 10
reserves for the next block, even when the original c is 50. c will be raised
again when the next s raises.

• A number of past steps to track p: This is simply the size of q to maintain.
An application can have a higher p to have more past data for a smoother
scaling process.

• A range for the concurrency level r: This defines the minimum and the
maximum number of c to clamp. This range is useful to make sure c will
not scale too high to cross the transaction size limit or scale too low to
have congestion when a large group of users gets back at the same time.

• A token name t: This is a unique token name that determines the reserve
and step UTXOs that belong to this state. For example, a DEX might
have a currency symbol for all liquidity pools, with a unique token name
for each specific pair. These tokens can only be minted with the state
UTXO.

• A validity interval i: This is used to organize transaction validity intervals,
which helps organize the Reserve and Apply phases. To prevent users
from consuming UTXOs with the wrong redeemer, which would lead to
congestion.

• A binary era e: This can be used to organize phases further. For instance,
in era 0, the state is applied with steps from era 0, creating new era 0
reserves before turning into an era 1 state, with era 1 reserve UTXOs
getting reserved in the same block. This allows state application in every
block and effectively requires c era 0 reserves plus steps and c era 1 reserves
plus steps at any given time.

dApp developers can freely configure the architecture as fit for each of their
states. For example, a simple state that does not need extra datum storage for
auto-scaling can go with a constant c to be updated through a decentralized
voting process when needed.
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The validation rule is also application-dependent, with a few foundational
rules:

• Apart from the state itself, both the input and output sets must con-
tain exactly c UTXOs, each with exactly one t token. This rule ensures
deterministic input sets so that no user steps are left behind.

• The validation rule has to be deterministic. The same set of inputs must
always result in the same set of outputs. This rule prevents any influence
from off-chain agents that submit the Apply transaction. When step order
matters, we can sort by a step attribute to still apply deterministically.
For a liquidity pool, this can be the approximate submit time of each swap
order step.

A state UTXO may also store values, like tokens of both pairs, for a liquidity
pool.

2.2.2 Reserve

A reserve is a UTXO that dApp users consume to produce a Step UTXO. It is
used to guarantee that no steps are left behind in an Apply transaction.

If users can create steps directly without going through this reserve process,
steps will be left behind when there are more steps than a transaction size limit
can include. Furthermore, malicious off-chain agents can omit steps by choice
because the on-chain state is not notified when each step is created.

A reserve is application-dependent, with a few foundational rules:

• Store a t token for validation against its corresponding state and step.

• Have a binary era e that can be used to organize non-blocking phases.

• Have enough data to create a valid step. For example, a liquidity pool
reserve should know what assets can be deposited to create a swap order
step and a potential limit on the amount.

• Have an approximate creation time to prevent an Apply consumption dur-
ing the Reserve phase and vice-versa.

2.2.3 Step

A step is a UTXO that dApp users create to apply to the state UTXO. For
instance, this can be a swap order for a liquidity pool.

A step is application-dependent, with a few foundational rules:

• Store a t token for validation against its corresponding state.

• Have a binary era e that can be used to organize non-blocking phases.
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• Have enough data to make a valid state transition. For example, a liquidity
pool step should store the deposited assets and attach the swapped assets
to a Public Key.

• Have enough data to ensure a deterministic state transition. For instance,
a liquidity pool step should have an approximate reserve time for the steps
to be applied in that order.

2.3 Timing

Timing is vital to address the congestion problem of the UTXO model. For
example, we cannot allow a Reserve consumption of a reserve UTXO when an
Apply transaction also happens for that reserve in the same block.

To solve this problem, we add a validation interval i to the state to control
the validation interval of created reserve UTXOs. Before a certain threshold,
only a Reserve transaction can consume a reserve. After that threshold, only
an Apply transaction can consume a reserve. This technique creates two non-
conflicting phases to avoid congestion.

To avoid the one-block-one-phase problem, we can introduce a binary era e
to the state. For instance, in era 0, the state is applied with steps from era 0,
creating new era 0 reserves before turning into an era 1 state, with era 1 reserve
UTXOs getting reserved in the same block.

Note that timing often comes from a non-absolute off-chain timestamp. It
might not be trivial to tune time duration in terms of blocks.

Validation intervals and timing are not just great tools to fight congestion;
they can also be utilized for deterministic validation.

2.4 Deterministic Validation

Deterministic validation is the key characteristic that prevents any influence
from off-chain agents. Any state should have a deterministic validation rule
that can be shared both on-chain and off-chain.

That means designing a pure transition function to apply to the state with
each step iteratively.

f :: (State, [Output])→ Step→ (State, [Output])

Each iteration should validate the step. If it is valid, update the state and
append the corresponding valid output to the Output list. If it is not, append
the corresponding invalid output to the Output list.

When ordering affects determinism, we have to sort the steps through an
attribute before the iterative fold. For example, ordering matters for a liquidity
pool state because it changes the price after each swap. Also, the off-chain
agent can select any of the two similar steps that mark the end of liquidity
for further swaps without order. Certain applications like voting might accept
these problems when order does not matter. Others will have to find a unique
attribute for each step to sort on.
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A powerful attribute that can be assigned to most cases is the approximate
reserved time t of each step. We can acquire it through an off-chain timestamp
supplied in the Reserve transaction. t is then padded to a range r and provided
to an on-chain MustValidateIn constraint. This rule requires the transaction’s
validity range to be contained in r. A dishonest t will fail to reserve.

For example, it is now the 26th second globally, and the user honestly says
26 in the redeemer. This timestamp is then padded with 3 seconds to construct
the range r (26, 29). If this transaction validates by the 29th second, the reserve
passes. If the user lies with 20 to front-run other steps, it will construct the range
r (20, 23). This duration has already gone at submit time, so a transaction with
a validity range in it would not validate.

Note that it might still be possible to front-run a reserve by copying the step
but with a t−1 timestamp. We are still studying this race condition to see if we
can prevent it or provide the best formula for everyone to follow. The intuition
is that if we pad too much, there will be much room for front-running; if we pad
too tight, honest reserves might fail due to race conditions. Commutative steps
do not have such a problem.

With this deterministic validation rule, the on-chain script first calculates the
outputs, including the new state, then compares them to those supplied through
the transaction. Only transactions that provide this correct answer validate.
Then off-chain agents can only use the same validation rule to construct the
only valid Apply transaction.

Since this deterministic validation rule is shared both on-chain and off-chain,
it should be possible to tell if a step would validate at submit time. This rule
helps prevent users from paying for steps that would fail. If the race condition
at submit time is acceptable, dApp developers can also utilize this property to
punish steps that fail to progress the on-chain state, as a DoS suspect that fails
deliberately to avoid a fee like a yield for a successful swap.

2.5 Scalability

The architecture’s scalability is very well-defined through the concurrency level
c in the state. Since up to exactly c steps can be applied to a state in a
single transaction, we can update this number to fine-tune the concurrency
level. This can be done automatically through an auto-scaling mechanism or
voted manually through a decentralized voting process.

It is essential to set c and the upper bound of r low enough not to risk
crossing the transaction size limit. dApp developers need to monitor ledger
transaction size updates to adapt in time.

As each state has its own concurrency level, we can have a high c for liquidity
pools with higher traffic and a low c for those that do not. Low-traffic states
can keep c low to reduce transaction fees and the number of unused UTXOs.

It is to be noted that our architecture is a general solution to a big problem.
More specialized techniques might be needed to scale different dApps further.
We also mention more dimensions to scale in the Related Work section.
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2.6 Concating Steps

It is a lot more space-efficient to work with a UTXO of steps than many step
UTXOs. The reason comes from the overheads that come with each UTXO. For
example, all step UTXOs share the same validator hash. Combining multiple
step UTXOs into a UTXO of steps reduces a lot of duplicated validator hashes
in the Apply transaction. A larger Datum also does not yield a larger hash.

Therefore, if we can make a step a Monoid, with a reserve as the mempty, and
a mconcat that concats steps together, we can create another concating phase
to trade a block worth of latency for more throughput.

Reserve 1

Reserve 2

Reserve 3

...

Reserve

Reserve

Step 1

Step 3

...

Concat Step

Since the t tokens are simply accumulated after concating, the validation
rule of the state simply needs to count for exactly c t tokens. As this new phase
is also non-blocking, we can promote the binary era e to a ternary era e to
guarantee an Apply every block.

Alternatively, we can design a subsystem that concats steps into reserves.

Reserve 1

Reserve 2

...

Sub-Reserve 1

Sub-Reserve 2

...

Concat

Reserve

Step 2

...

Sub-Step 2

State

Apply New Reserve 1

New Reserve 2

...

New Sub-Reserve 1

New Sub-Reserve 2

...

New State

This architecture also requires an additional phase from the user sub-step
getting into a concatted step before an Apply transaction but requires more
UTXOs and processing. For now, it is an attempt to complicate the architecture
in search of new insights. We do plan to introduce more data structures in the
upcoming draft versions.
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2.7 UTXO Discovery

For a specific dApp with a specific endpoint like https://api.dapp.com, it is
straightforward for its backend to track all reserves, steps, and state UTXOs of
a single state. This can be done by tracking all UTXOs that store the t token,
with a minting policy that guarantees these UTXOs to store it at any given
time, and only those can.

To avoid congestion, this backend can queue requests so that no two requests
target the same UTXO in the same block. Congestion might still happen from
external users, which is hard to prevent in a fully decentralized system. Luckily,
this only happens for reserving the same UTXO during the Reserve phase. Steps
and states only have one deterministic Apply redeemer in the Apply phase. We
will continue to research a solution for this specific congestion. A solution that
exchanges latency for no such congestion is presented in Long-Term Quotaless
Deterministic Batching[4].

At the time of writing, we recommend customizing the Chain Index compo-
nent of the Plutus Platform for UTXO discovery and management.

3 Experiments

We are prototyping multiple smart contracts using this architecture:

• Concurrently mint MELDed Fiat like mEUR against a governance state
that tracks what fiat can be minted and collateral prices. Concurrently
deposit/withdraw collateral, mint/burn mFiat at a CDP against a single
oracle state that tracks prices.

• Concurrently lend and borrow against a MELD lending pool.

• Concurrently stake MELD to a governance state for validating governance
proposals.

• Concurrently apply swap orders against a single MELD Vault (single-sided
liquidity pool).

We have collected valuable findings along the way, especially on more tech-
niques that work better in a few specific instances. Few timing issues have arisen
in Layer-1 too. We hope to demonstrate them in the upcoming versions and
papers.

After a few different working prototypes, we will start generalizing the ar-
chitecture into a library that can be reused anywhere. We might need to use
Template Haskell to keep as many components reusable as possible. Library
users can then focus on writing only their application-specific logic. This en-
deavor should also yield more exciting ideas for us to raise and implement on
Cardano public repositories.

We intend to open-source this library as soon as we reach a stable state.
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4 Related Work

4.1 Batching

Our architecture belongs to this group of solutions. The main advantages we
have identified at this time are:

• Deterministic on-chain validation rule. Off-chain agents can only submit
the only correct output. This rule means no influence whatsoever from
any off-chain agents.

• Security. No edge exploitation from off-chain agents.

• DoS resilient. Since the off-chain batching agent has no influence, a DoS
attacker would need to consume as many reserves per block as possible.
If the small steps are legit, they are still net gains for the dApp. This
DoS attack is also not sustainable as attackers have to pay transaction
fees for each reserve and yield for a swap. We can also punish steps that
deliberately fail and do not progress the state with deterministic validation
off-chain. Users have to pay for the steps for other solutions that give
power to the batching agent, while the malicious agents still get rewarded
for such small steps. Also, it does not matter if this architecture is under
attack or not; it still guarantees up-to auto-scaling c steps per block. In
contrast, a successful one-step transaction would render other solutions
one step per block. dApp developers with this architecture can also set a
minimum limit (like minimal swap value) to make it more expensive for
DoS attackers to reserve. While on other solutions, it does not matter if
such a limit or cost structure exists; as long as there is a legit order that
a user has paid for, the one step per block DoS attack is there.

We are researching more data and cost structures to make it even more
expensive for attackers to pay for reserves. We will include dedicated
sections for DoS prevention and cost structures in the upcoming paper
versions.

• Capital efficiency. We do not have to pay more for off-chain agents to act
with good intent.

• Simplicity. The architecture is well-scoped. The off-chain infrastructure
is minimal. We do not have to design complex incentive functions that
may be affected by market conditions and require further governance to
tune right.

There are still many exciting ideas that we can learn from other solutions,
like chaining transactions in the same block. Since the transaction size limits
our architecture, more extended dimensions to scale are still desired.
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4.2 Divide & Conquer

If only one state UTXO can be consumed per block, we can break it down into
smaller UTXOs to be spent concurrently. For instance, we can have multiple
lending pools for lenders and borrowers to interact with per block.

This solution, however, is usually not capital efficient. One lending pool
might not have enough assets for a big borrower to borrow from. When lenders
want to withdraw their supplied assets, they have to consume all lending pool
UTXOs they have lent to. Both these cases require consuming multiple UTXOs
to process a request, which requires more UTXOs to avoid congestion, which
again lowers the number of assets at each pool. It is not trivial to solve this
balance.

This design also only works for applications with no shared state among
the sub-states. It is tough to fit applications that do and those that require
synchronization or accumulation of the sub-states.

Not all states contain capital to suffer from this problem. In certain appli-
cations like oracle price consuming, it may be plausible to have multiple similar
datum-only UTXOs.

Note that this design is not exclusive to our architecture. One can break
down a state into smaller states, then use our concurrent architecture on each
sub-state. Since the maximum size of a transaction limits our architecture’s
concurrency level, this approach can add another dimension to scale.

4.3 Lazy Update

Lazy update is another line of techniques that we have been studying. The idea
is to reserve to create update UTXOs like the batch steps in this architecture.
However, instead of constantly applying the updates into a state, we wait until
such a state is required on-chain.

For example, in a governance voting process, we only need to consume the
votes when we consume their proposal to decide if it passes or not. Constantly
applying votes to the proposal state risks congestion and unnecessary transac-
tion fees. The off-chain world is unaffected, as it can still find the vote UTXOs
and show users the state of the proposal.

Another instance is to store just enough data to calculate the interest a bor-
rower has to pay at any given time instead of constantly updating this interest
on-chain.

The key questions to ask when designing on-chain states are then:

• When do we have to consume the state on-chain?

• How often do these events occur?

• How do we design the contract to do less on-chain and do more off-chain?

• How do we design the deterministic validation rule and transition function
for the state?
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4.4 Long-Term Quotaless Deterministic Batching[4]

This is another line of research that we have been pursuing. It is not reserve-
based and lets users create steps directly to guarantee zero congestion. The
main trade-off is latency, as we need more blocking state phases to guarantee
no steps are left behind.

For one-time states with no order, we keep submitting steps and batching
them into a state until the make-step deadline. We then shrink the minimum
number of steps needed to be applied per block until it reaches one to ensure
all steps are applied. For example, we keep applying at least 64 steps per block
until a block where no transaction consumes the state. Then starting from the
next block, we apply at least 32 steps, repeat until the last step. A malicious
agent cannot affect an honest agent in this scenario.

For continuous states with an order, we allow off-chain agents to dispute
others and punish the malicious ones. The dispute phase blocks and a batch of
steps can only be applied to a state when the previous block has no dispute.
One can dispute a malicious batch by including a step ordered earlier than the
last step of the batch.

We are looking for solutions that better balance quota and latency, a class
of architectures that brings the best out of both these two.

4.5 Purely Functional[2] Designs

This paper was inspired by the difficulty of implementing state-centric models
from account-based ledgers on a UTXO ledger. While studying workaround
solutions to support those state-centric models, we suspect that more elegant
UTXO-driven solutions exist for different applications.

For example, we have been designing a market model called One Shot
Markets[5] where we bring price discovery off-chain to keep the on-chain markets
pure and independent. It can be considered as a combination of an on-chain
limit order book and an off-chain AMM. An on-chain swap is then a transaction
that consumes a set of markets to create more markets. This design builds on
strong parallelism of the UTXO model, where different outputs can be spent
independently in the same block. There is no bottleneck if there is no shared
state among the UTXOs.

4.6 Layer-two Solutions

Layer-two solutions like Hydra[3] are significant for this concurrency and scal-
ing challenge. While the presented architecture could work on Layer-one, we
suspect it would work even better on Layer-two. We are looking forward to
experimenting with this architecture on a dedicated MELD sidechain for better
timing with just MELD transactions.
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5 Conclusions

This paper presented a few solutions to the concurrency problem on UTXO
ledgers, especially for on-chain states requiring constant updates. The architec-
ture is still in its early form. More specialized techniques are needed to scale
different dApps further. We have, for example, been designing extended and
different architectures for different MELD components.

We have a massive backlog of innovative ideas to explore and expect to
publish many new versions and research efforts soon. It is now indeed the best
time to do R&D on Cardano and the UTXO ledgers in general.
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